

Stage 2 & 3: Oxidation of Pyruvate & Krebs Cycle (Ch. 9)

Glycolysis is only the start

Glycolysis

glucose
$$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow pyruvate$$

6C

 $2x 3C$

- Pyruvate has more energy to yield
 - 3 more C to strip off (to <u>oxidize</u>)
 - if O₂ is available, pyruvate enters mitochondria
 - enzymes of Krebs cycle complete the full oxidation of sugar to CO₂

$$\begin{array}{c} \text{pyruvate} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \text{CO}_2 \\ \hline \text{3C} \end{array}$$

Cellular respiration

Mitochondria — Structure

- Double membrane energy harvesting organelle
 - smooth outer membrane, highly folded inner membrane
 - cristae
 - intermembrane space
 - fluid-filled space between membranes
 - matrix

Oxidation of pyruvate

Pyruvate enters mitochondrial matrix

- 3 step oxidation process
- releases 2 CO₂ (count the carbons!)
- reduces 2 NAD → 2 NADH (moves e⁻)
- produces 2 <u>acetyl CoA</u>
- Acetyl CoA enters <u>Krebs cycle</u>

Where does the CO₂ go?
Exhale!

Pyruvate oxidized to Acetyl CoA

Krebs cycle

- aka Citric Acid Cycle
 - in mitochondrial matrix
 - 8 step pathway: each catalyzed by specific enzyme
 - step-wise <u>catabolism</u> of <u>6C citrate</u> molecule

1937 | 1953

Hans Krebs 1900-1981

- Evolved later than glycolysis
 - does that make evolutionary sense?
 - bacteria →3.5 billion years ago (glycolysis)
 - free $O_2 \rightarrow 2.7$ billion years ago (photosynthesis)
 - eukaryotes →1.5 billion years ago (aerobic respiration = organelles → mitochondria)

Count the carbons!

Count the electron carriers!

Whassup?

So we fully oxidized glucose $C_6H_{12}O_6$ CO_2 & ended up

with 4 ATP!

Electron Carriers = Hydrogen Carriers

- Krebs cycle produces large quantities of electron carriers
 - NADH
 - ◆ FADH₂
 - ◆ go to <u>Electron</u>

Transport Chain!

What's so important about electron carriers?

Energy accounting of Krebs cycle


```
Net gain = 2 ATP
= 8 NADH + 2 FADH<sub>2</sub>
```

Value of Krebs cycle?

- If the yield is only 2 ATP then how was the Krebs cycle an adaptation?
 - value of NADH & FADH₂
 - electron carriers & H carriers
 - -reduced molecules move electrons & H⁺
 - to be used in the <u>Electron Transport Chain</u>

Review Questions

1. All of the following molecules are produced by the Kreb's cycle EXCEPT

- 2. ATP
- A. CO2
- B. Pyruvate
- C. FADH
- D. NADH

1. All of the following molecules are produced by the Kreb's cycle EXCEPT

- 2. ATP
- A. CO2
- B. Pyruvate
- C. FADH
- D. NADH

3. By the end of the Kreb's cycle, which of the following statements are true

- I. All of the carbon from the original glucose molecule has been oxidized to Carbon Dioxide
- II. All of the electrons from the original glucose molecule have been transferred to ATP molecules
- III. Oxygen is no longer necessary for the remaining steps of aerobic respiration
- A. I only
- B. II only
- C. III only
- D. I and II only
- E. I, and III only

3. By the end of the Kreb's cycle, which of the following statements are true

- I. All of the carbon from the original glucose molecule has been oxidized to Carbon Dioxide
- II. All of the electrons from the original glucose molecule have been transferred to ATP molecules
- III. Oxygen is no longer necessary for the remaining steps of aerobic respiration

A. I only

- B. II only
- C. III only
- D. I and II only
- E. I, and III only