Honors Biology Chapter 3: Macromolecules PPT Notes | Notes | | | |---|--|--| | 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. | | | | Diverse molecules found in cells are composed of carbon bonded to other elements | | | | Carbon-based molecules are called | | | | By sharing electrons, carbon can bond to four other atoms | | | | By doing so, it can branch in up to four directions | | | | 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. | | | | ■ Methane (CH ₄) is one of the simplest organic compounds | | | | Four covalent bonds link four hydrogen atoms to the carbon atom | | | | Each of the four lines in the formula for methane represents a pair of shared electrons | | | | 3.1 I can define organic compounds, hydrocarbons, and carbon skeletons. | | | | Methane and other compounds composed of only carbon and hydrogen are called | | | | Carbon, with attached hydrogens, can bond together in chains of various lengths | | | | 3.1 I can define organic compounds, hydrocarbons, and carbon skeletons. | | | | A chain of carbon atoms is called a | | | | Carbon skeletons can be branched or unbranched | | | | Therefore, different compounds with the same molecular formula can be produced | | | | These structures are called | | | | 3.3 I can list the four main classes of macromolecules. | | | | There are four classes of biological molecules | | | | | | | | - | | | | - | | | | | | | | | | | ## 3.3 I can explain the relationship between monomers and polymers | • | The four classes of biological molecules contain very large molecules | | |---|---|----------------------------| | | They are often called | because of their large siz | | - | They are also called | because they are made from identical building blocks | |---|----------------------|--| | | strung together | | | The building blocks are called | |--| | 3.3 I can explain the relationship between monomers and polymers | | A cell makes a large number of polymers from a small group of monomers | | Proteins are made from only acids, and DNA is built from just
four kinds of nucleotides | | The monomers used to make polymers are universal | | 3.3 I can compare the processes of dehydration synthesis and hydrolysis. | | Monomers are linked together to form polymers through, which remove water | | Polymers are broken apart by, the addition of water | | All biological reactions of this sort are mediated by, which speed up chemical reactions in cells | | 3.4 I can describe the structures, functions, properties, and types of carbohydrate molecules. | | Carbohydrates range from small sugar molecules (monomers) to large polysaccharides | | Sugar monomers are, such as glucose and fructose | | These can be hooked together to form the polysaccharides | | 3.4 I can describe the structures, functions, properties, and types of carbohydrate molecules. | | Monosaccharides are the for cellular work | | Monosaccharides are also used as raw materials to manufacture other organic molecules | | 3.5 I can describe the structures, functions, properties, and types of carbohydrate molecules. | | ■ Two monosaccharides (monomers) can bond to form a in a dehydration reaction | | An example is a glucose monomer bonding to a fructose monomer to form sucrose, a common
disaccharide | | 3.7 I can describe the structures, functions, properties, and types of carbohydrate molecules. | | are polymers of monosaccharides | | They can function in the cell as a storage molecule or as a structural compound | | 3.7 I can describe the structures, functions, properties, and types of carbohydrate molecules. | | ■ is a storage polysaccharide composed of glucose monomers and found in plants | | is a storage polysaccharide composed of glucose, which is hydrolyzed by animals when
glucose is needed | | • is a polymer of glucose that forms plant cell walls | | is a polysaccharide used by insects and crustaceans to build an exoskeleton | | 3.8 I can describe the structures, functions, properties, and types of lipid molecules. | | | are water insoluble (| , or water fearing) compounds that are | |------------------|---|--| | import | tant in energy storage | | | _ | They contain twice as much energy as a polysaccharide | | | | are lipids made from glycerol and fatty acids | | | 3.8 I can descri | ibe the structures, functions, properties, and types of lipid mole | ecules. | | ■ Fatty a | acids link to glycerol by a dehydration reaction | | | _ | A fat contains one glycerol linked to three fatty acids | | | _ | Fats are often called triglycerides because of their structure | | | 3.8 I can descri | ibe the structures, functions, properties, and types of lipid mole | ecules. | | ■ Some f | fatty acids contain double bonds | | | _ | This causes kinks or bends in the carbon chain because the m bond to the carbons at the double bond | aximum number of hydrogen atoms cannot | | _ | These compounds are called maximum number of hydrogens | because they have fewer than the | | | Fats with the maximum number of hydrogens are call | led | | 3.9 I can descri | ibe the structures, functions, properties, and types of lipids mo | lecules. | | | are structurally similar to fats and are | an important component of all cells | | _ | For example, they are a major part of cell membranes, in which phospholipids | ch they cluster into a bilayer of | | _ | The hydrophilic heads are in contact with the water of the en | vironment and the internal part of the cell | | _ | The hydrophobic tails band in the center of the bilayer | | | 3.9 I can descri | ibe the structures, functions, properties, and types of lipid mole | ecules. | | | are lipids composed of fused ring structures | | | _ | is an example of a steroid that the cell membrane | plays a significant role in the structure of | | _ | In addition, cholesterol is the compound from which we synth | nesize sex hormones | | 3.11 I can desc | cribe the structures, functions, properties, and types of protein | molecules. | | ■ A | is a polymer built from various combination | ns of 20 amino acid monomers | | _ | Proteins have unique structures that are directly related to the | neir functions | | _ | , proteins that serve as metabolic cata within cells | alysts, regulate the chemical reactions | | 3.11 I can desc | cribe the structures, functions, properties, and types of protein | molecules. | | are fou | proteins provide associations between body par und within muscle | rts and proteins | | •
exemp | proteins include antibodies of the immune system, and proteins are best valified by the hormones | |---------------------------|--| | · | proteins serve as antenna for outside signals, and proteins carry oxygen | | 2.12 Land door | with a three atmospherical and an arrangement in a result of more and an arrangement in the arrangement in the arrangement in a second and arrangement in a second and arrangement in a second and arrangement in a second arr | | | ribe the structures, functions, properties, and types of protein molecules. | | ■ Amino | acid monomers are linked together to form polymeric proteins | | _ | This is accomplished by an enzyme-mediated dehydration reaction | | _ | This links the carboxyl group of one amino acid to the amino group of the next amino acid | | | The covalent linkage resulting is called a | | 3.13 I can desc | ribe the structures, functions, properties, and types of protein molecules. | | A polyr | peptide chain contains hundreds or thousands of amino acids linked by peptide bonds | | _ | The amino acid sequence causes the polypeptide to assume a particular shape | | _ | The shape of a protein determines its | | 3.13 I can desc | ribe the structures, functions, properties, and types of protein molecules. | | ■ If for so | ome reason a protein's shape is altered, it can no longer function | | _ | will cause polypeptide chains to unravel and lose their shape and, thus, their function | | _ | Proteins can be denatured by changes in salt concentration and pH | | 3.14 I can desc | ribe the structures, functions, properties, and types of protein molecules. | | ■ A prote | ein can have four levels of structure | | _ | · | | _ | | | _ | | | _ | | | 3.14 I can desc | ribe the structures, functions, properties, and types of protein molecules. | | | of a protein is its unique amino acid sequence | | | The correct amino acid sequence is determined by the cell's genetic information | | _ | The slightest change in this sequence affects the protein's ability to function | | | The significant sharing in this sequence affects the protein's donity to function | | 3.14 I can desc | ribe the structures, functions, properties, and types of protein molecules. | | Proteir | n results from coiling or folding of the polypeptide | | _ | Coiling results in a helical structure called an alpha helix | Folding may lead to a structure called a pleated sheet | 3.14 I can describe the structures, functions, properties, and types of protein molecules. | |---| | The overall three-dimensional shape of a protein is called its | | Tertiary structure generally results from interactions between the R groups of the various amino acids | | Disulfide bridges are covalent bonds that further strengthen the protein's shape | | 3.14 I can describe the structures, functions, properties, and types of protein molecules. | | Two or more polypeptide chains (subunits) associate providing | | Collagen is an example of a protein with quaternary structure | | Its triple helix gives great strength to connective tissue, bone, tendons, and ligaments | | 3.16 I can compare the structures and functions of DNA and RNA. | | and are composed of monomers called | | | | Nucleotides have three parts | | A five-carbon sugar called ribose in RNA and deoxyribose in DNA | | A phosphate group | | A nitrogenous base | | 3.16 I can compare the structures and functions of DNA and RNA. | | DNA nitrogenous bases are adenine (A), thymine (T), cytosine (C), and guanine (G) | | RNA also has A, C, and G, but instead of T, it has uracil (U) | | 3.16 I can compare the structures and functions of DNA and RNA. | | A nucleic acid polymer, a polynucleotide, forms from the nucleotide monomers when the phosphate of one
nucleotide bonds to the sugar of the next nucleotide | | The result is a repeating with protruding nitrogenous bases | | 3.16 I can compare the structures and functions of DNA and RNA. | | Two polynucleotide strands wrap around each other to form a DNA | | The two strands are associated because particular bases always hydrogen bond to one another | | A pairs with T, and C pairs with G, producing | | RNA is usually a single polynucleotide strand | | 3.16 I can compare the structures and functions of DNA and RNA. | | A particular nucleotide sequence that can instruct the formation of a polypeptide is called a | | Most DNA molecules consist of millions of base pairs and, consequently, many genes | Coiling and folding result from hydrogen bonding between certain areas of the polypeptide chain | _ | These genes, many of which are unique to the species, life's structures and functions | determine the structure of proteins and, thus, | |---|---|--| |